Mesin Unrelated Parallel dengan Mempertimbangkan Multi-task Simultaneous Supervision Dual Resources Constraints (MTSSDRC) untuk Meminimasi Makespan
Model Penjadwalan untuk Mesin Unrelated Parallel dengan Mempertimbangkan Multi-task Simultaneous Supervision Dual Resources Constraints (MTSSDRC) untuk Meminimasi Makespan
DOI:
https://doi.org/10.61221/jriem.v2i1.28Kata Kunci:
MTSSDRC, UPMSPAbstrak
Untuk memaksimalkan produksinya, banyak perusahaan berinvestasi pada mesin semi-otomatis untuk membantu mereka mencapai potensi maksimalnya. Namun banyak yang lupa juga memperhitungkan penyesuaian yang harus dilakukan terhadap jadwal yang sudah ada karena adanya waktu idle yang dimiliki operator saat ini karena mesin baru telah tiba. Kendala sumber daya ganda pengawasan simultan multi-tugas (MTSSDRC) telah menjadi metode yang tepat untuk memecahkan masalah tersebut. Meskipun demikian, masih terdapat kekurangan pada bidang MTSSDRC yang melibatkan Unrelated Parallel Machine Scheduling Problem (UPMSP). Penelitian ini mengusulkan model MTSSDRC yang sejalan dengan UPMSP dimana mesin merupakan suatu sistem yang kompleks dan variasi kecepatan pemesinan dapat terjadi dari mesin tertentu ke pekerjaan tertentu. Penelitian ini juga membawa MTSSDRC lebih dekat dengan mitranya di kehidupan nyata sebagai lantai pabrik yang ada di banyak industri manufaktur
Referensi
Akbar, M., & Irohara, T. (2018a). Dual resource constrained scheduling considering operator working modes and moving in identical parallel machines using a permutation-based genetic algorithm. IFIP Advances in Information and Communication Technology, 535, 464–472. https://doi.org/10.1007/978-3-319-99704-9_57
Akbar, M., & Irohara, T. (2018b). Scheduling for sustainable manufacturing: A review. In Journal of Cleaner Production (Vol. 205, pp. 866–883). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.09.100
Akbar, M., & Irohara, T. (2020a). Metaheuristics for the multi-task simultaneous supervision dual resource-constrained scheduling problem. Engineering Applications of Artificial Intelligence, 96. https://doi.org/10.1016/j.engappai.2020.104004
Akbar, M., & Irohara, T. (2020b). NSGA-II variants for solving a social-conscious dual resource-constrained scheduling problem. Expert Systems with Applications, 162. https://doi.org/10.1016/j.eswa.2020.113754
Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., & Calle, M. (2020). Scheduling a dual-resource flexible job shop with makespan and due date-related criteria. Annals of Operations Research, 291(1–2), 5–35. https://doi.org/10.1007/s10479-019-03196-0
Aron, R., & Abraham, A. (2022). Resource scheduling methods for cloud computing environment: The role of meta-heuristics and artificial intelligence. In Engineering Applications of Artificial Intelligence (Vol. 116). Elsevier Ltd. https://doi.org/10.1016/j.engappai.2022.105345
Arroyo, J. E. C., & Leung, J. Y. T. (2017). Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Computers and Operations Research, 78, 117–128. https://doi.org/10.1016/j.cor.2016.08.015
Avgerinos, I., Mourtos, I., Vatikiotis, S., & Zois, G. (2023). Weighted tardiness minimization for unrelated machines with sequence-dependent and resource-constrained setups. http://arxiv.org/abs/2307.06671
Baptiste, P., Rebaine, D., & Zouba, M. (2017). FPTAS for the two identical parallel machine problem with a single operator under the free changing mode. European Journal of Operational Research, 256(1), 55–61. https://doi.org/10.1016/j.ejor.2016.05.062
Bazargan-Lari, M. R., Taghipour, S., Zaretalab, A., & Sharifi, M. (2022). Production scheduling optimization for parallel machines subject to physical distancing due to COVID-19 pandemic. Operations Management Research, 15(1–2), 503–527. https://doi.org/10.1007/s12063-021-00233-9
Berthier, A., Yalaoui, A., Chehade, H., Yalaoui, F., Amodeo, L., & Bouillot, C. (2022). Unrelated parallel machines scheduling with dependent setup times in textile industry. Computers and Industrial Engineering, 174. https://doi.org/10.1016/j.cie.2022.108736
Berti, N., Finco, S., Battaïa, O., & Delorme, X. (2021). Ageing workforce effects in Dual-Resource Constrained job-shop scheduling. International Journal of Production Economics, 237. https://doi.org/10.1016/j.ijpe.2021.108151
Chen, H., Guo, P., Jimenez, J., Dong, Z. S., & Cheng, W. (2023). Unrelated Parallel Machine Photolithography Scheduling Problem with Dual Resource Constraints. IEEE Transactions on Semiconductor Manufacturing, 36(1), 100–112. https://doi.org/10.1109/TSM.2022.3232108
Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. In European Journal of Operational Research (Vol. 47).
Costa, A., Cappadonna, F. A., & Fichera, S. (2013). A hybrid genetic algorithm for job sequencing and worker allocation in parallel unrelated machines with sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 69(9–12), 2799–2817. https://doi.org/10.1007/s00170-013-5221-5
Cunha, M. M., Viegas, J. L., Martins, M. S. E., Coito, T., Costigliola, A., Figueiredo, J., Sousa, J. M. C., & Vieira, S. M. (2019). Dual resource constrained scheduling for quality control laboratories. IFAC-PapersOnLine, 52(13), 1421–1426. https://doi.org/10.1016/j.ifacol.2019.11.398
Eimaraghy, H. (2000). Scheduling of Manufacturing Systems Under Dual-Resource Constraints Using Genetic Algorithms. In ~ Journal of Manufacturing Systems (Vol. 19, Issue 3).
Fleszar, K., & Hindi, K. S. (2018). Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. European Journal of Operational Research, 271(3), 839–848. https://doi.org/10.1016/j.ejor.2018.05.056
Ho, C.-J., & Lau, H.-S. (1992). Minimizing Total Cost in Scheduling Outpatient Appointments. Management Science, 38(12), 1750–1764. https://doi.org/10.1287/mnsc.38.12.1750
Karabegović, I., Husak, E., Karabegović, E., & Mahmić, M. (2016). The Role of Industrial Robots in the Development of Automotive Industry in China HOW THE CORE TECHNOLOGIES OF INDUSTRY 4.0 ARE CHANGING THE AUTOMOTIVE INDUSTRY IN THE WORLD, WITH A FOCUS ON CHINA. https://www.researchgate.net/publication/312376111
Koulamas, C. (1994). Total tardiness problem: review and extensions. Operations Research, 42(6), 1025–1041. https://doi.org/10.1287/opre.42.6.1025
Koulamas, C., & Kyparisis, G. J. (2023). A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems. In European Journal of Operational Research (Vol. 305, Issue 3, pp. 999–1017). Elsevier B.V. https://doi.org/10.1016/j.ejor.2022.03.043
Kumar, V. S. A., Marathe, M. V., Parthasarathy, S., & Srinivasan, A. (2009). A unified approach to scheduling on unrelated parallel machines. Journal of the ACM, 56(5). https://doi.org/10.1145/1552285.1552289
Lei, D., & Yang, H. (2022). Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony artificial bee colony. Applied Soft Computing, 125. https://doi.org/10.1016/j.asoc.2022.109154
Lenstra, J. K., & Vakhania, N. (2023). On the complexity of scheduling unrelated parallel machines with limited preemptions. Operations Research Letters, 51(2), 187–189. https://doi.org/10.1016/j.orl.2023.02.004
Lin, D. Y., & Huang, T. Y. (2021). A hybrid metaheuristic for the unrelated parallel machine scheduling problem. Mathematics, 9(7). https://doi.org/10.3390/math9070768
Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines with sequence-dependent setups. Computers and Operations Research, 34(11), 3420–3438. https://doi.org/10.1016/j.cor.2006.02.006
Maecker, S., Shen, L., & Mönch, L. (2023). Unrelated parallel machine scheduling with eligibility constraints and delivery times to minimize total weighted tardiness. Computers and Operations Research, 149. https://doi.org/10.1016/j.cor.2022.105999
Martins, M. S. E., Viegas, J. L., Coito, T., Firme, B., Costigliola, A., Figueiredo, J., Vieira, S. M., & Sousa, J. M. C. (2023). Minimizing total completion time in large-sized pharmaceutical quality control scheduling. Journal of Heuristics, 29(1), 177–206. https://doi.org/10.1007/s10732-023-09509-8
Martins, M. S. E., Viegas, J. L., Coito, T., Firme, B. M., Sousa, J. M. C., Figueredo, J., & Vieira, S. M. (2020). Reinforcement learning for dual-resource constrained scheduling. IFAC-PapersOnLine, 53, 10810–10815. https://doi.org/10.1016/j.ifacol.2020.12.2866
Mokotoff, E., Jimeno, L., & Guti~rrez, A. I. (2001). List Scheduling Algorithms to Minimize the Makespan on Identical Parallel Machines (Vol. 9, Issue 2).
Nelson, R. T. (1968). Dual-Resource Constrained Series Service Systems. Operations Research, 16(2), 324–341. https://doi.org/10.1287/opre.16.2.324
Pfund, M., Fowler, J. W., & Gupta, J. N. D. (2004). A survey of algorithms for single and multi-objective unrelated parallel-machine deterministic scheduling problems. Journal of the Chinese Institute of Industrial Engineers, 21(3), 230–241. https://doi.org/10.1080/10170660409509404
Pinedo. (1995). Scheduling: Theory, Algorithms, and System.
Pulansari, F., & M., T. D. R. (2021). The Unrelated Parallel Machine Scheduling with a Dependent Time Setup using Ant Colony Optimization Algorithm. Jurnal Teknik Industri, 23(1), 65–74. https://doi.org/10.9744/jti.23.1.65-74
Sanati, H., Moslehi, G., & Reisi-Nafchi, M. (2023). Unrelated parallel machine energy-efficient scheduling considering sequence-dependent setup times and time-of-use electricity tariffs. EURO Journal on Computational Optimization, 11. https://doi.org/10.1016/j.ejco.2022.100052
Treleven, M. (1989). A review of the dual resource constrained system research. IIE Transactions (Institute of Industrial Engineers), 21(3), 279–287. https://doi.org/10.1080/07408178908966233
Van Den Akker, M., Hoogeveen, J. A., & Van Velde, S. L. D. E. (1999). Parallel machine scheduling by column generation ü. Operations Research, 47(6), 862–872. https://doi.org/10.1287/opre.47.6.862
Yang, B., & Geunes, J. (2007). A single resource scheduling problem with job-selection flexibility, tardiness costs and controllable processing times. Computers and Industrial Engineering, 53(3), 420–432. https://doi.org/10.1016/j.cie.2007.02.005
Zhu, X., Xu, J., Ge, J., Wang, Y., & Xie, Z. (2023). Multi-Task Multi-Agent Reinforcement Learning for Real-Time Scheduling of a Dual-Resource Flexible Job Shop with Robots. Processes, 11(1). https://doi.org/10.3390/pr11010267
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Akbar Rugova, Sukoyo, Muhammad Akbar

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.